Pervasive Displays Library Suite - Reference Manual 9.0.9
Library for Pervasive Displays e-paper screens, extension boards and development kits
All Classes Files Functions Variables Enumerations Enumerator Macros Pages
GridXY Class Reference

Grid class, x- and y-axis. More...

#include <hV_Utilities.h>

Public Member Functions

 GridXY ()
 
void define (uint16_t x0, uint16_t y0, uint16_t dx, uint16_t dy, uint16_t nX, uint16_t nY, bool flagAdjust=false)
 Define the grid.
 
uint16_t dX (uint16_t i=1)
 Get size for number of divisions, x-axis.
 
uint16_t dY (uint16_t i=1)
 Get size for number of divisions, y-axis.
 
uint16_t x (uint16_t i=0)
 Get coordinate at division, x-axis.
 
uint16_t y (uint16_t i=0)
 Get coordinate at division, y-axis.
 

Detailed Description

Grid class, x- and y-axis.

Constructor & Destructor Documentation

◆ GridXY()

GridXY::GridXY ( )

Constructor

Member Function Documentation

◆ define()

void GridXY::define ( uint16_t x0,
uint16_t y0,
uint16_t dx,
uint16_t dy,
uint16_t nX,
uint16_t nY,
bool flagAdjust = false )

Define the grid.

Parameters
x0origin coordinate, x-axis
y0origin coordinate, y-axis
dxsize of the grid, x-axis
dysize of the grid, y-axis
nXnumber of divisions in x-axis
nYnumber of divisions in y-axis
flagAdjustadjust origin, default false

◆ dX()

uint16_t GridXY::dX ( uint16_t i = 1)

Get size for number of divisions, x-axis.

Parameters
inumber of divisions, 0..n
Returns
pixels of the divisions
Note
No check on i <= n

◆ dY()

uint16_t GridXY::dY ( uint16_t i = 1)

Get size for number of divisions, y-axis.

Parameters
inumber of divisions, 0..n
Returns
pixels of the divisions
Note
No check on i <= n

◆ x()

uint16_t GridXY::x ( uint16_t i = 0)

Get coordinate at division, x-axis.

Parameters
iindex of the division, 0..n-1
Returns
coordinate of the start of the division
Note
No check on i < n

◆ y()

uint16_t GridXY::y ( uint16_t i = 0)

Get coordinate at division, y-axis.

Parameters
iindex of the division, 0..n-1
Returns
coordinate of the start of the division
Note
No check on i < n

The documentation for this class was generated from the following file: